Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Bacteria size determination by elastic light scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Katz, A. ; Inst. for Ultrafast Spectrosc. & Lasers, City Coll. of New York, NY, USA ; Alimova, A. ; Min Xu ; Rudolph, E.
more authors

Light extinction and angular scattering measurements were performed on three species of bacteria with different sizes and shapes ( Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The Gaussian ray approximation of anomalous diffraction theory was used to determine the average bacteria size from transmission measurements. A rescaled spectra combining multiple angular data was analyzed in the framework of the Rayleigh-Gans theory of light scattering. Particle shape and size distribution is then obtained from the rescale spectra. Particle characteristics (size and/or shape) retrieved from both methods are in good agreement with size and shape measured under scanning electron microscopy. These results demonstrate that light scattering may be able to detect and identify microbial contamination in the environment.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:9 ,  Issue: 2 )