By Topic

Synthetic-aperture radar processing using fast factorized back-projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ulander, L.M.H. ; Swedish Defence Res. Agency, Linkoping, Sweden ; Hellsten, H. ; Stenstrom, G.

Exact synthetic aperture radar (SAR) inversion for a linear aperture may be obtained using fast transform techniques. Alternatively, back-projection integration in time domain can also be used. This technique has the benefit of handling a general aperture geometry. In the past, however, back-projection has seldom been used due to heavy computational burden. We show that the back-projection integral can be recursively partitioned and an effective algorithm constructed based on aperture factorization. By representing images in local polar coordinates it is shown that the number of operations is drastically reduced and can be made to approach that of fast transform algorithms. The algorithm is applied to data from the airborne ultra-wideband CARABAS SAR and shown to give a reduction in processing time of two to three orders of magnitude.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:39 ,  Issue: 3 )