Cart (Loading....) | Create Account
Close category search window

SVM-based nonparametric discriminant analysis, an application to face detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fransens, Rik ; Leuven Univ., Belgium ; De Prins, J. ; Van Gool, L.

Detecting the dominant normal directions to the decision surface is an established technique for feature selection in high dimensional classification problems. Several approaches have been proposed to render this strategy more amenable to practice, but they still show a number of important shortcomings from a pragmatic point of view. This paper introduces a novel such approach, which combines the normal directions idea with support vector machine classifiers. The two make a natural and powerful match, as SVs are located nearby, and fully describe the decision surfaces. The approach can be included elegantly into the training of performant classifiers from extensive datasets. The potential is corroborated by experiments, both on synthetic and real data, the latter on a face detection experiment. In this experiment we demonstrate how our approach can lead to a significant reduction of CPU-time, with neglectable loss of classification performance.

Published in:

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on

Date of Conference:

13-16 Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.