By Topic

Scattering of an induced surface electromagnetic field by fatigue cracks in ferromagnetic metals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sadeghi, S.H.H. ; Dept. of Electron. Syst. Eng., Essex Univ., Colchester, UK ; Mirshekar-Syahkal, D.

In crack detection and sizing by the alternating current field measurement technique, U-shaped wires or coils excited by a high-frequency AC current source can be used to induce the surface field in the workpiece. The authors present a modeling technique for the interaction of a fatigue crack in a ferromagnetic metal with the surface field resulting from an inducer with two U-shaped wires. This work is an extension of a previous modeling technique to have developed for infinitely long (one-dimensional) cracks. In the present technique, the boundary of the fatigue crack is approximated by a circular arc, leading to a formulation for an efficient computation of the field-flaw interaction. Various numerical and experimental results supporting the modeling and illustrating the behavior of the magnetic field and electric potential at the metal surface around circular-arc cracks are presented

Published in:

Magnetics, IEEE Transactions on  (Volume:28 ,  Issue: 2 )