By Topic

Polarization-based inverse rendering from a single view

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miyazaki, D. ; Dept. of Comput. Sci., Tokyo Univ., Japan ; Tan, R.T. ; Hara, K. ; Ikeuchi, K.

This paper presents a method to estimate geometrical, photometrical, and environmental information of a single-viewed object in one integrated framework under fixed viewing position and fixed illumination direction. These three types of information are important to render a photorealistic image of a real object. Photometrical information represents the texture and the surface roughness of an object, while geometrical and environmental information represent the 3D shape of an object and the illumination distribution, respectively. The proposed method estimates the 3D shape by computing the surface normal from polarization data, calculates the texture of the object from the diffuse only reflection component, determines the illumination directions from the position of the brightest intensity in the specular reflection component, and finally computes the surface roughness of the object by using the estimated illumination distribution.

Published in:

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on

Date of Conference:

13-16 Oct. 2003