Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Object recognition with informative features and linear classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vidal-Naquet, M. ; Fac. of Math. & Comput. Sci., Weizmann Inst. of Sci., Rehovot, Israel ; Ullman, S.

We show that efficient object recognition can be obtained by combining informative features with linear classification. The results demonstrate the superiority of informative class-specific features, as compared with generic type features such as wavelets, for the task of object recognition. We show that information rich features can reach optimal performance with simple linear separation rules, while generic feature based classifiers require more complex classification schemes. This is significant because efficient and optimal methods have been developed for spaces that allow linear separation. To compare different strategies for feature extraction, we trained and compared classifiers working in feature spaces of the same low dimensionality, using two feature types (image fragments vs. wavelets) and two classification rules (linear hyperplane and a Bayesian network). The results show that by maximizing the individual information of the features, it is possible to obtain efficient classification by a simple linear separating rule, as well as more efficient learning.

Published in:

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on

Date of Conference:

13-16 Oct. 2003