Cart (Loading....) | Create Account
Close category search window

A group-theoretic approach to fast matrix multiplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cohn, H. ; Microsoft Res., Redmond, VA, USA ; Umans, C.

We develop a new, group-theoretic approach to bounding the exponent of matrix multiplication. There are two components to this approach: (1) identifying groups G that admit a certain type of embedding of matrix multiplication into the group algebra C[G], and (2) controlling the dimensions of the irreducible representations of such groups. We present machinery and examples to support (1), including a proof that certain families of groups of order n2+o(1) support n × n matrix multiplication, a necessary condition for the approach to yield exponent 2. Although we cannot yet completely achieve both (1) and (2), we hope that it may be possible, and we suggest potential routes to that result using the constructions in this paper.

Published in:

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on

Date of Conference:

11-14 Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.