By Topic

Algorithms and complexity results for #SAT and Bayesian inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bacchus, F. ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; Dalmao, S. ; Pitassi, T.

Bayesian inference is an important problem with numerous applications in probabilistic reasoning. Counting satisfying assignments is a closely related problem of fundamental theoretical importance. In this paper, we show that plain old DPLL equipped with memorization (an algorithm we call #DPLLCache) can solve both of these problems with time complexity that is at least as good as state-of-the-art exact algorithms, and that it can also achieve the best known time-space tradeoff. We then proceed to show that there are instances where #DPLLCache can achieve an exponential speedup over existing algorithms.

Published in:

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on

Date of Conference:

11-14 Oct. 2003