We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaplan, H. ; Tel-Aviv Univ., Tel Aviv, Israel ; Lewenstein, M. ; Shafrir, N. ; Sviridenko, M.

A directed multigraph is said to be d-regular if the indegree and outdegree of every vertex is exactly d. By Hall's theorem one can represent such a multigraph as a combination of at most n2 cycle covers each taken with an appropriate multiplicity. We prove that if the d-regular multigraph does not contain more than d/2 copies of any 2-cycle then we can find a similar decomposition into 0(n2) pairs of cycle covers where each 2-cycle occurs in at most one component of each pair. Our proof is constructive and gives a polynomial algorithm to find such decomposition. Since our applications only need one such a pair of cycle covers whose weight is at least the average weight of all pairs, we also give a simpler algorithm to extract a single such pair. This combinatorial theorem then comes handy in rounding a fractional solution of an LP relaxation of the maximum and minimum TSP problems. For maximum TSP, we obtain a tour whose weight is at least 2/3 of the weight of the longest tour, improving a previous 5/8 approximation. For minimum TSP we obtain a tour whose weight is at most 0.842log2 n times the optimal, improving a previous 0.999log2 n approximation. Utilizing a reduction from maximum TSP to the shortest superstring problem we obtain a 2.5-approximation algorithm for the latter problem which is again much simpler than the previous one. Other applications of the rounding procedure are approximation algorithms for maximum 3-cycle cover (factor 2/3, previously 3/5) and maximum asymmetric TSP with triangle inequality (factor 10/13, previously 3/4 ).

Published in:

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on

Date of Conference:

11-14 Oct. 2003