By Topic

A new model to forecast the results of matches based on hybrid neural networks in the soccer rating system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Taoya Cheng ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Deguang Cui ; Zhimin Fan ; Jie Zhou
more authors

The objective of this paper is to build a result prediction model for the rating system in soccer games. A rating system which plays a crucial role in world sports field yields predictions for the probability that one contestant beats another. The result prediction model is the core technique in the rating system. The robustness and accuracy of the model is a very important feature because people will trust the rating system only if it can give the exact prediction of the game results. This paper employs a coarse-to-fine training technique based on hybrid neural network. Very few people have ever attempted the method based on neural network before in this field. First a match is classified into three categories with a LVQ net to determine the strength contrast between two contestants. Then the elaborately designed data will go through the specific BP nets according to the classifying result. The model is trained and tested on volumes of actual soccer match results from Italian series A. Finally the results of the model are compared to other prediction models based on statistics. The outcome shows that the new model is more accurate and provides better performance evaluation of all teams.

Published in:

Computational Intelligence and Multimedia Applications, 2003. ICCIMA 2003. Proceedings. Fifth International Conference on

Date of Conference:

27-30 Sept. 2003