By Topic

The impact of resource partitioning on SMT processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. E. Raasch ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; S. K. Reinhardt

Simultaneous multithreading (SMT) increases processor throughput by multiplexing resources among several threads. Despite the commercial availability of SMT processors, several aspects of this resource sharing are not well understood. For example, academic SMT studies typically assume that resources are shared dynamically, while industrial designs tend to divide resources statically among threads. This study seeks to quantify the performance impact of resource partitioning policies in SMT machines, focusing on the execution portion of the pipeline. We find that for storage resources, such as the instruction queue and reorder buffer, statically allocating an equal portion to each thread provides good performance, in part by avoiding starvation. The enforced fairness provided by this partitioning obviates sophisticated fetch policies to a large extent. SMT's potential ability to allocate storage resources dynamically across threads does not appear to be of significant benefit. In contrast, static division of issue bandwidth has a negative impact on throughput. SMT's ability to multiplex bursty execution streams dynamically onto shared function units contributes to its overall throughput. Finally, we apply these insights to SMT support in clustered architectures. Assigning threads to separate clusters eliminates intercluster communication; however, in some circumstances, the resulting partitioning of issue bandwidth cancels out the performance benefit of eliminating communication.

Published in:

Parallel Architectures and Compilation Techniques, 2003. PACT 2003. Proceedings. 12th International Conference on

Date of Conference:

27 Sept.-1 Oct. 2003