By Topic

Fabrication of matrix-addressable InGaN-based microdisplays of high array density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. W. Jeon ; Inst. of Photonics, Univ. of Strathclyde, Glasgow, UK ; H. W. Choi ; M. D. Dawson

We describe the fabrication and characterization of matrix-addressable microlight-emitting diode (micro-LED) arrays based on InGaN, having elemental diameter of 20 μm and array size of up to 128 × 96 elements. The introduction of a planar topology prior to contact metallization is an important processing step in advancing the performance of these devices. Planarization is achieved by chemical-mechanical polishing of the SiO2-deposited surface. In this way, the need for a single contact pad for each individual element can be eliminated. The resulting significant simplification in the addressing of the pixels opens the way to scaling to devices with large numbers of elements. Compared to conventional broad-area LEDs, the micrometer-scale devices exhibit superior light output and current handling capabilities, making them excellent candidates for a range of uses including high-efficiency and robust microdisplays.

Published in:

IEEE Photonics Technology Letters  (Volume:15 ,  Issue: 11 )