By Topic

High-power and low-divergence 980-nm InGaAs-GaAsP-AlGaAs strain-compensated quantum-well diode laser grown by MOCVD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhao ; Multiplex Inc., South Plainfield, NJ, USA ; Li, L. ; Wumin Wang ; Yicheng Lu

High-power InGaAs-GaAsP-AlGaAs strain-compensated separate-confinement heterostructure double quantum-well lasers emitting at 980-nm wavelength have been grown by low-pressure metal-organic epitaxial chemical vapor deposition. Fabricated with a ridge waveguide, the lasers achieved an output power of 386 mW in the fundamental lateral mode without any kink being observed. By optimizing the laser structure parameters, a very low transverse beam divergence of 22.1/spl deg/ and a high slope efficiency of up to 0.89 mW/mA were obtained. The narrow transverse far field enables an output power of over 290 mW to be coupled into a single-mode fiber with a high coupling efficiency of 83.2% at 430 mA. Life testing at various powers shows excellent long-term reliability after 3500 h.

Published in:

Photonics Technology Letters, IEEE  (Volume:15 ,  Issue: 11 )