By Topic

Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Artes ; Inst. of Commun. & Radio-Frequency Eng., Vienna Univ. of Technol., Wien, Austria ; D. Seethaler ; F. Hlawatsch

It is well known that suboptimal detection schemes for multiple-input multiple-output (MIMO) spatial multiplexing systems (equalization-based schemes as well as ing-and-cancelling schemes) are unable to exploit all of the available diversity, and thus, their performance is inferior to ML detection. Motivated by experimental evidence that this inferior performance is primarily caused by the inability of suboptimal schemes to deal with "bad" (i.e., poorly conditioned) channel realizations, we study the decision regions of suboptimal schemes for bad channels. Based on a simplified model for bad channels, we then develop two computationally efficient detection algorithms that are robust to bad channels. In particular, the novel sphere-projection algorithm (SPA) is a simple add-on to standard suboptimal detectors that is able to achieve near-ML performance and significantly increased diversity gains. The SPA's computational complexity is comparable with that of ing-and-cancelling detectors and only a fraction of that of the Fincke-Phost sphere-decoding algorithm for ML detection.

Published in:

IEEE Transactions on Signal Processing  (Volume:51 ,  Issue: 11 )