Cart (Loading....) | Create Account
Close category search window
 

Efficient spotlight SAR raw signal simulation of extended scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Synthetic aperture radar (SAR) raw signal simulation is a powerful tool for designing new sensors, testing processing algorithms, planning missions, and devising inversion algorithms. In this paper, a spotlight SAR raw signal simulator for distributed targets is presented. The proposed procedure is based on a Fourier domain analysis: a proper analytical reformulation of the spotlight SAR raw signal expression is presented. It is shown that this reformulation allows us to design a very efficient simulation scheme that employs fast Fourier transform codes. Accordingly, the computational load is dramatically reduced with respect to a time-domain simulation and this, for the first time, makes spotlight simulation of extended scenes feasible.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.