By Topic

A Markov random field-based approach to decision-level fusion for remote sensing image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nishii, R. ; Fac. of Integrated Arts & Sci., Hiroshima Univ., Japan

A method is proposed for the enhancement of the quality of a classification result by fusing this result with remote sensing images, based on a Markov random field approach. The classification accuracy is estimated by a modified posterior probability, which is used for choosing the optimal classification result. The procedure is applied to a benchmark dataset for discrimination provided by the IEEE Geoscience and Remote Sensing Society Data Fusion Committee, and it shows an excellent performance. The classified result won the competition of the data fusion contest 2001 held by the same committee.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 10 )