By Topic

Further numerical studies of backscattering from time-evolving nonlinear sea surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. R. Hayslip ; Northrop-Grumman, Linthicum, MD, USA ; J. T. Johnson ; G. R. Baker

Previous studies have demonstrated that the West et al. (1987) numerical model for nonlinear hydrodynamic evolution of a sea surface produces significant features in calculated L-band backscattered Doppler spectra compared to a linear sea surface evolution model. These prior comparisons were limited, however, to a maximum wind speed of 2.0 m/s due to failure of the West et al. algorithm when steep short-wave features formed on the surface. In this paper, L-band Doppler spectra with the West et al. model are reported for wind speeds up to 5.0 m/s through the use of a curvature filter to reduce these steep short waves. The higher wind speed results again show significant deviations from those reported with a linear hydrodynamic model, including increased spectral broadening and polarization dependencies.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:41 ,  Issue: 10 )