By Topic

Recombination via discrete defect levels with application to semiconductor material characterisation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Debuf, Didier ; Centre for Third Generation Photovoltaics, New South Wales Univ., Sydney, NSW, Australia ; Corkish, Richard

Semiconductor material characterization in terms of defect parameters is presently evaluated experimentally by applying the Shockley-Read-Hall (SRH) recombination time constant expression. A recent analytic solution to the SRH rate equations extended to differential rate equations for two multiple defect level systems, yields a solution derived without an approximation. In terms of material characterisation, this exact solution is shown to provide detailed information on multiple level depths in contrast to the existing theory, which relies on one dominant single level. Furthermore, for semiconductor samples known to be predominantly doped with one defect species, it is shown theoretically that the dominant decay is influenced by the other defect species present in the semiconductor sample.

Published in:

Optoelectronic and Microelectronic Materials and Devices, 2002 Conference on

Date of Conference:

11-13 Dec. 2002