By Topic

Heterojunction properties of ZnO:Al/p-Si prepared by rf magnetron sputtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Song, Dengyuan ; Centre for Photovoltaic Eng., New South Wales Univ., Sydney, NSW, Australia ; Baozeng Guo ; Aberle, A.G.

ZnO:Al/p-Si heterojunctions were fabricated by rf magnetron sputtering of ZnO films onto p-type (100) Si wafer substrates. The structural and electrical properties of the heterojunctions were investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. C-V results indicate an abrupt interface and a band bending of 0.35 eV in the silicon. The dark forward current density-voltage-temperature (J-V-T) characteristics were measured and analysed to determine the dominant current transport mechanism in the heterojunction. Our experiments suggest that the dark forward current is dominated by a multi-step tunneling process in the silicon space charge region, whereas the reverse current is found to be mainly due to thermal carrier generation in this region.

Published in:

Optoelectronic and Microelectronic Materials and Devices, 2002 Conference on

Date of Conference:

11-13 Dec. 2002