Cart (Loading....) | Create Account
Close category search window
 

Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jensen, M.T. ; EVALife Group, Univ. of Aarhus, Denmark

The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN2), where G is the number of generations, M is the number of objectives, and N is the population size. The N2 factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN logM-1N), much faster than the O(GMN2) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN2) algorithms.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 5 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.