By Topic

The effects of pulse plating parameters on copper plating distribution of microvia in PCB manufacture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yung, K.C. ; Dept. of Ind. & Syst. Eng., Hong Kong Polytech.s Univ., Kowloon, China ; Yue, T.M. ; Chan, K.C. ; Yeung, K.F.

The introduction of microvias to printed circuit boards has revolutionized the entire printed circuit board (PCB) industry. In many instances, the plating of microvias creates a bottleneck in the manufacture of high-density circuitry. In this study, the effects of pulse plating parameters and different shaped waveforms on the quality of microvias have been investigated. The results showed that, within the scope of this study, the reverse current cycle time has little effect on throwing power. Indeed, a decrease in forward current, or an increase in reverse current could significantly improve the throwing power. The study also found that using a triangular, instead of the traditional rectangular waveform, could increase the throwing power further, with a more uniform distribution of copper plating. Finally, the advantage of the cathode vibrating during plating was demonstrated.

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 2 )