Cart (Loading....) | Create Account
Close category search window
 

Spectral efficiency of coded phase-shift keying for fiber-optic communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kramer, G. ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Ashikhmin, A. ; van Wijngaarden, A.J. ; Xing Wei

Several optical modulation and detection schemes are compared by computing their spectral efficiencies over additive white Gaussian noise channels. The bandwidth savings of differential quadrature phase-shift keying (D-QPSK) over both direct-detection on-off keying and differential binary phase-shift keying suggest that D-QPSK can improve the reach and efficiency of wavelength-division multiplexing systems. To test the theory, Reed-Solomon and low-density parity-check forward error correction codes are designed and evaluated. The codes generally behave as expected, except that for D-QPSK the gains are hampered by the differential detector. It is further shown that neither multiple-symbol differential detection nor decision-feedback detection is attractive when using strong codes.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.