By Topic

Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong Wang ; Lasersharp Corp., Hopkinton, MA, USA ; Hong Po

Based on numerical modeling, the dynamic characteristics of high-power ytterbium-doped double-clad fiber amplifiers during the amplification of nanosecond pulses with kilohertz repetition rates are comprehensively analyzed. The temporal pulse energy, power, upper-level population distribution, amplified spontaneous emission, stored energy, pulse waveform evolution, etc., are emphasized in this paper. Some practical issues in amplification processes, such as the impacts of reflected pulses from the external surfaces and the fluctuation of input pulse energy on the amplifier performance, are also discussed. The models and results are important for the design and development of high-power double-clad fiber amplifiers.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 10 )