By Topic

Study of Raman amplification properties in triangular photonic crystal fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fuochi, M. ; Dipt. di Ingegneria dell''Informazione, Univ. di Parma, Italy ; Poli, F. ; Selleri, S. ; Cucinotta, A.
more authors

The Raman properties of triangular photonic crystal fibers (PCFs) are analyzed in order to design a fiber for Raman amplification with enhanced performances. By casting the Raman intensity propagation equations, the Raman effective area and the Raman gain coefficient are introduced - two meaningful parameters that take into account the overlap between the pump and signal profiles. The behavior of these two parameters is examined in silica PCFs as a function of the geometrical characteristics of the triangular lattice. The numerical results show that a proper design of the hole diameter and the spacing between air holes can minimize the Raman effective area and maximize the Raman gain coefficient. The paper then focuses on PCFs with a germania-doped core. It is found that, for a given PCF cross section and dimension of the doped region, the Raman gain coefficient increases linearly with germania concentration. Moreover, by enlarging the doped region, it is discovered that a PCF with a germania-doped area internally tangent to the first ring of air holes has a maximum Raman gain coefficient. Finally, the calculated values of the Raman gain coefficient are compared with those of other highly nonlinear fibers presented in the literature, showing that a well-designed triangular PCF can significantly improve Raman gain performance.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 10 )