Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Well-conditioned MLFMA formulation for closed PEC targets in the vicinity of a half space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhijun Liu ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Adams, R.J. ; Carin, L.

The multilevel fast multipole algorithm (MLFMA) is applied to the problem of scattering from a closed perfect electric conductor (PEC) in the presence of a half space. The combined-field integral equation (CFIE) employs a new electric-field integral equation (EFIE) formulation, robust to a high basis-function sample rate, relative to wavelength. The new EFIE formulation is discussed, as is its implementation in the context of a CFIE MLFMA analysis for closed PEC targets. Several example results are presented, in which comparisons are made to traditional MLFMA formulations.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 10 )