Cart (Loading....) | Create Account
Close category search window

Structure identification of generalized adaptive neuro-fuzzy inference systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azeem, M.F. ; Dept. of Electr. Eng., Aligarh Muslim Univ., India ; Hanmandlu, M. ; Ahmad, N.

This paper presents a method to identify the structure of generalized adaptive neuro-fuzzy inference systems (GANFISs). The structure of GANFIS consists of a number of generalized radial basis function (GRBF) units. The radial basis functions are irregularly distributed in the form of hyper-patches in the input-output space. The minimum number of GRBF units is selected based on a heuristic using the fuzzy curve. For structure identification, a new criterion called structure identification criterion (SIC) is proposed. SIC deals with a trade off between performance and computational complexity of the GANFIS model. The computational complexity of gradient descent learning is formulated based on simulation study. Three methods of initialization of GANFIS, viz., fuzzy curve, fuzzy C-means in x×y space and modified mountain clustering have been compared in terms of cluster validity measure, Akaike's information criterion (AIC) and the proposed SIC.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.