By Topic

Evolutionary fuzzy modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pedrycz, W. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Alta., Canada ; Reformat, M.

This study is concerned with a general methodology of identification of fuzzy models. Unlike numeric models, fuzzy models operate at a level of information granules - fuzzy sets - and this aspect brings up an important design requirement of transparency of the model. We propose a three-phase development framework by distinguishing between structural and parametric optimization processes. The underlying topology of the model dwells on fuzzy neural networks - architectures governed by fuzzy logic and equipped with parametric flexibility. Two general optimization mechanisms are explored: the structural optimization is realized via genetic programming whereas for the ensuing detailed parametric optimization we proceed with gradient-based learning. The main advantages of this approach are discussed in detail. The study is illustrated with the aid of a numeric example that provides a detailed insight into the performance of the fuzzy models and quantifies crucial design issues.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:11 ,  Issue: 5 )