By Topic

Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Tani ; Brain Sci. Inst., RIKEN, Saitama, Japan ; M. Ito

This paper investigates how behavior primitives are self-organized in a neural network model utilizing a distributed representation scheme. The model is characterized by so-called parametric biases which adaptively modulate the encoding of different behavior patterns in a single recurrent neural net (RNN). Our experiments, using a real robot arm, showed that a set of end-point and oscillatory behavior patterns are learned by self-organizing fixed points and limit cycle dynamics that form behavior primitives. It was also found that diverse novel behavior patterns can be generated by modulating the parametric biases arbitrarily. Our analysis showed that such diversity in behavior generation emerges because a nonlinear map is self-organized between the space of parametric biases and that of the behavior patterns. The origin of the observed nonlinearity from the distributed representation is discussed. This paper investigates how behavior primitives are self-organized in a neural network model utilizing a distributed representation scheme. Our robot experiments showed that a set of end-point and oscillatory behavior patterns are learned by self-organizing fixed points and limit cycle dynamics that form behavior primitives. It was also found that diverse novel behavior patterns, in addition to previously learned patterns, can be generated by taking advantage of nonlinear effects that emerge from the distributed representation.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:33 ,  Issue: 4 )