By Topic

A multiple hill climbing approach to software module clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahdavi, K. ; Dept. of Inf. Syst. & Comput., Brunel Univ., Uxbridge, UK ; Harman, M. ; Hierons, R.M.

Automated software module clustering is important for maintenance of legacy systems written in a 'monolithic format' with inadequate module boundaries. Even where systems were originally designed with suitable module boundaries, structure tends to degrade as the system evolves, making re-modularization worthwhile. This paper focuses upon search-based approaches to the automated module clustering problem, where hitherto, the local search approach of hill climbing has been found to be most successful. In the paper we show that results from a set of multiple hill climbs can be combined to locate good 'building blocks' for subsequent searches. Building blocks are formed by identifying the common features in a selection of best hill climbs. This process reduces the search space, while simultaneously 'hard wiring' parts of the solution. The paper reports the results of an empirical study that show that the multiple hill climbing approach does indeed guide the search to higher peaks in subsequent executions. The paper also investigates the relationship between the improved results and the system size.

Published in:

Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on

Date of Conference:

22-26 Sept. 2003