By Topic

A new regime for operating capacitive micromachined ultrasonic transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Bayram ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; E. Haeggstrom ; G. G. Yaralioglu ; B. T. Khuri-Yakub

We report on a new operation regime for capacitive micromachined ultrasonic transducers (cMUTs). Traditionally, cMUTs are operated at a bias voltage lower than the collapse voltage of their membranes. In the new proposed operation regime, first the cMUT is biased past the collapse voltage. Second, the bias voltage applied to the collapsed membrane is reduced without releasing the membrane. Third, the cMUT is excited with an ac signal at the bias point, keeping the total applied voltage between the collapse and snapback voltages. In this operation regime, the center of the membrane is always in contact with the substrate. Our finite element methods (FEM) calculations reveal that a cMUT operating in this new regime, between collapse and snapback voltages, possesses a coupling efficiency (k/sub T//sup 2/) higher than a cMUT operating in the conventional regime below its collapse voltage. This paper compares the simulation results of the coupling efficiencies of cMUTs operating in conventional and new operation regimes.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:50 ,  Issue: 9 )