Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Quantitative characterization and neural network-based evaluation of colonoscopic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tjoa, M.P. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Krishnan, S.M. ; Doraiswami, R.

Extracting features from the colonoscopic images is essential for getting the quantitative parameters, which characterizes the properties of the colon. The features are employed in the computer-assisted diagnosis of colonoscopic images to assist the physician in detecting the colon status. Present methods mostly use manual approaches. A novel scheme is developed to extract new texture-based quantitative features from the texture spectra in the chromatic and achromatic domains of colonoscopic images. The texture spectra are obtained from the texture unit numbers, which contain local and global texture information of the image. These features are evaluated using supervisory Backpropagation Neural Network (BPNN) with various training algorithms, viz., resilient propagation (RPROP), scaled conjugate gradient (SCG), and Marquardt algorithms. The evaluation is based on training time, training epoch, and accuracy on classifying the colon status. The preliminary results obtained by the proposed approach support the feasibility of the technique.

Published in:

Control, Automation, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference on  (Volume:3 )

Date of Conference:

2-5 Dec. 2002