By Topic

Two level PCA to reduce noise and EEG from evoked potential signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Palaniappan ; Fac. of Inf. Sci. & Technol., Multimedia Univ., Malaysia ; S. Anandan ; P. Raveendran

Two common artifacts that corrupt evoked responses are noise and background electroencephalogram (EEG). In this paper, a two-level principal component analysis (PCA) is used to reduce these artifacts from single trial evoked responses. The first level PCA is applied to reduce noise from these VEP signals while the second level PCA reduces EEG. The method is used to analyse the object recognition and decision-making capability during visual responses. The analysis is extended to study the differences in visual response between alcoholics and non-alcoholics using single trial P3 visual evoked potential (VEP) signals. The analysis shows that alcoholics respond slower and weaker to visual stimulus as compared to non-alcoholics.

Published in:

Control, Automation, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference on  (Volume:3 )

Date of Conference:

2-5 Dec. 2002