Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

SVC dynamic analytical model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jovcic, D. ; Sch. of Electr. & Mech. Eng., Ulster Univ., Newtownabbey, UK ; Pahalawaththa, N. ; Zavahir, M. ; Hassan, H.A.

This paper presents a linear state-space model of a static VAr compensator. The model consists of three individual subsystem models: an AC system, a SVC model, and a controller model, linked together through d-q transformation. The issue of nonlinear susceptance-voltage term and coupling with a static frame of reference is resolved using an artificial rotating susceptance and linearizing its dependence on firing angle. The model is implemented in MATLAB and verified against PSCAD/EMTDC in the time and frequency domains. The verification demonstrates very good system gain accuracy in a wide frequency range f < 150 Hz, whereas the phase angle shows somewhat inferior matching above 25 Hz. It is concluded that the model is sufficiently accurate for many control design applications and practical stability issues. The model's use is demonstrated by analyzing the dynamic influence of the PLL gains, where the eigenvalue movement shows that reductions in gains deteriorate system stability.

Published in:

Power Delivery, IEEE Transactions on  (Volume:18 ,  Issue: 4 )