Cart (Loading....) | Create Account
Close category search window
 

A new data mining approach to dissolved gas analysis of oil-insulated power apparatus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yann-Chang Huang ; Dept. of Electr. Eng., Cheng Shiu Univ., Kaohsiung, Taiwan

This paper proposes genetic algorithm tuned wavelet networks (GAWNs) for data mining of dissolved-gas-analysis (DGA) records and incipient fault detection of oil-insulated power transformers. The genetic algorithm-based (GA) optimization process automatically tunes the parameters of wavelet networks: translation and dilation of the wavelet nodes, and the weighting values of the weighting nodes. The GAWNs can identify the complex relations between the dissolved gas content of transformer oil and corresponding fault types. The proposed GAWNs have been tested on the Taipower Company's diagnostic records, using four diagnosis criteria, and compared with artificial neural networks (ANNs) and conventional methods. Experimental results demonstrate that the GAWNs have remarkable diagnosis accuracy and require far less learning time than ANNs for different diagnosis criteria.

Published in:

Power Delivery, IEEE Transactions on  (Volume:18 ,  Issue: 4 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.