By Topic

Artificial neural networks in power system restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bretas, A.S. ; Fed. Univ. of Rio Grande do Sul, Porto Alegre, Brazil ; Phadke, A.G.

Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.

Published in:

Power Delivery, IEEE Transactions on  (Volume:18 ,  Issue: 4 )