Cart (Loading....) | Create Account
Close category search window
 

Single and dual p-doped channel In0.52Al0.48 As/InxGa1-xAs (x=0.53, 0.65) FET's and the role of doping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, Yi-Jen ; Michigan Univ., Ann Arbor, MI, USA ; Pavlidis, D.

The properties of lattice-matched (x=0.53) and strained ( x=0.65) In0.52Al0.48As/InxGa 1-xAs p-doped channel FETs are reported. The role of doping density is studied with the help of two designs (dual-channel with low doping and single-channel with high doping). The strained dual-channel devices demonstrated an improvement of mobility from 108 cm2/V-s (53% In) to 265 cm2/V-s (65% In) at 300 K. The corresponding intrinsic transconductance enhancement is from 23 Ms/mm (53% In) to 46.5 mS/mm (65% In) using 1.0 μm-long gates. The cutoff frequency (ft) also improves from 1.0 to 1.4 GHz. The impact of strain in the highly-doped single-channel device is small. The band structure under lattice-matched and strained conditions and the position of the Fermi level according to doping seem to be the main factors determining the reported features

Published in:

Electron Devices, IEEE Transactions on  (Volume:39 ,  Issue: 3 )

Date of Publication:

Mar 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.