By Topic

IC bridge fault modeling for IP blocks using neural network-based VHDL saboteurs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaw DB ; Gennum Corp., Burlington, Ont., Canada ; Al-Khalili, D. ; Rozon, C.N.

This paper presents a new bridge fault model, suitable for IP blocks, that is based on a multiple layer feedforward neural network and implemented within the framework of a VHDL saboteur cell. Empirical evidence and experimental results show that it satisfies a prescribed set of bridge fault model criteria better than any existing approach. The new model computes bridged node voltages and propagation delay times with due attention to surrounding circuit elements. This is especially significant since, with the exception of full analog defect simulation, no other technique even attempts to model the delay effects of bridge defects. Yet, compared to these analog simulations, the new approach is several orders of magnitude faster and, for a 0.35u cell library, is able to compute bridged node voltages with an average error near 0.006 volts and propagation delay times with an average error near 14 ps. Furthermore, dealing with a concept that has not previously been considered in related research, the new model is validated with respect to deep-submicron technologies for limited gate-count circuit modules.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 10 )