By Topic

Adaptive low-power address encoding techniques using self-organizing lists

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. N. Mamidipaka ; Dept. of Inf. & Comput. Sci., Univ. of California, Irvine, CA, USA ; D. S. Hirschberg ; N. D. Dutt

Off-chip bus transitions are a major source of power dissipation for embedded systems. In this paper, new adaptive encoding schemes are proposed that significantly reduce transition activity on data and multiplexed address buses. These adaptive techniques are based on self-organizing lists to achieve reduction in transition activity by exploiting the spatial and temporal locality of the addresses. Also the proposed techniques do not require any extra bit lines and have minimal delay overhead. The techniques are evaluated for efficiency using a wide variety of application programs including SPEC 95 benchmark set. Unlike previous approaches that focus on instruction address buses, experiments demonstrate significant reduction in transition activity of up to 54% in data address buses and up to 59% in multiplexed address buses. The average reductions are twice those obtained using current schemes on a data address bus and more than twice those obtained on a multiplexed address bus.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:11 ,  Issue: 5 )