By Topic

Application-directed voltage scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pouwelse, J. ; Fac. of Inf. Technol. & Syst., Delft Univ. of Technol., Netherlands ; Langendoen, K. ; Sips, Henk J.

Clock (and voltage) scheduling is an important technique to reduce the energy consumption of processors that support voltage scaling. It is difficult, however, to achieve good results using only statistics from the operating system level when applications show bursty (unpredictable) behavior. We take the approach that such applications must be made power-aware and specify their average execution time (AET) and the deadline to the scheduler controlling the clock speed and processor voltage. This paper describes our energy priority scheduling (EPS) algorithm supporting power-aware applications. EPS orders tasks according to how tight their deadlines are and how often tasks overlap. Low-priority tasks are scheduled first, since they can be easily preempted to accommodate for high-priority tasks later. The EPS algorithm does not always yield the optimal schedule, but has a low complexity. We have implemented EPS on a StrongARM-based variable-voltage platform. We conducted experiments with a modified video decoder that estimates the AET of each frame. Measurements show that application-directed voltage scaling reduces processor power consumption with 50% for the bursty video decoder without missing any frame deadlines.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 5 )