By Topic

Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Clocksin, W.F. ; Dept. of Comput., Oxford Brookes Univ., UK

We present a segmentation method that works for overlapping and closely packed nuclei in noisy images that have high variation in background intensity. The method has been tested on fluorescence in-situ hybridisation images of interphase leucocyte nuclei. Accurate segmentation is required in support of an automatic procedure for assaying telomere content on a per area per nucleus basis. The method first finds a single seed point for each nucleus that uniquely identifies that nucleus. Seed points are located by an efficient iterative mode-finding algorithm based on robust nonparametric density estimation. Acting simultaneously on all nuclei in the image, and using the seed points as origins, flexible closed contours are dilated until each nucleus is circumscribed. Unlike previous approaches, the contour equations include a repulsive term that prevents different contours from intersecting, thereby preserving the identity of nearby or overlapping nuclei, and the contour is adaptively remeshed for greater efficiency The locations of the seed points are not critical in providing an accurate segmentation. The advantage of this method from an implementation point of view is that the computation of seed points and contours is highly efficient and robust compared with alternative approaches. The method is illustrated using data from a clinical pilot study.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003