By Topic

Object segmentation using feature based conditional morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hamid, M.R. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Baloch, A. ; Bilal, A. ; Zaffar, N.

This paper presents a new technique to segment objects of interest from cluttered background with varying edge densities and illumination conditions from gray scale imagery. An optimal background model is generated and an index of disparity of the objects from this model is computed. This index estimates the disparity, both in terms of edge densities and edge orientation. We introduce feature based conditional morphology to process the representations that are most likely to belong to the object of interest and obtain a distilled edge map. These edges are linked using Nth order interpolation to get the final outline of the object. We compare our approach with 9 contemporary background subtraction algorithms (Toyama et al. (1999)). Our approach shows significant performance advantages and uses only the gray scale images, while the other approaches also need the color images for their algorithms. A comparison with the conventional morphological techniques is also made to highlight the advantages of our algorithms.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003