By Topic

Cascaded attention and grouping for object recognition from video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Greindl, C. ; Inst. of Digital Image Process., Joanneum Res., Graz, Austria ; Goyal, A. ; Ogris, G. ; Paletta, L.

Object detection is an enabling technology that plays a key role in many application areas, such as content based media retrieval. Cognitive vision systems are here proposed where the focus of attention is directed towards most informative processing. The attentive detection system uses a cascade of increasingly complex classifiers of radial basis functions (RBF) networks for the stepwise identification of regions of interest (ROI) and refined object hypotheses. While the coarse classifier is used to determine first approximations on the ROI, more complex classifiers are used to give sufficiently accurate and consistent pose estimates. Objects are modelled by local appearances and in terms of posterior distributions in eigenspace. The experimental results were led for the automatic detection of brand objects in Formula One broadcasts and clearly illustrate the benefit in applying decision making on attention and probabilistic grouping.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003