By Topic

Multi-block PCA method for image change detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiu, B. ; GEODES, Inst. de Recherche pour le Developpement, Bondy, France ; Prinet, V. ; Perrier, E. ; Monga, O.

Principal component analysis (PCA) has been widely used in the reduction of the dimensionality of datasets, classification, feature extraction, etc. It has been combined with many other algorithms such as EM (expectation-maximization), ANN (artificial neural network), probabilistic models, statistical analysis, etc., and has its own developments, such as MPCA (moving PCA), MS-PCA (multi-scale PCA), etc. PCA and its derivatives have a wide range of applications, from face detection, to change analysis. Change detection with PCA shows, however, a major difficulty, that is, result interpretation. A new PCA method is developed, namely MB-PCA (multi-block PCA), in order to overcome this problem. Experimental results demonstrate the interest of the approach as a new way to use PCA.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003