By Topic

Unsupervised fuzzy clustering and image segmentation using weighted neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Muhammed, H.H. ; Centre for Image Anal., Uppsala Univ., Sweden

A new class of neuro fuzzy systems, based on so-called weighted neural networks (WNN), is introduced and used for unsupervised fuzzy clustering and image segmentation. Incremental and fixed (or grid-partitioned) weighted neural networks are presented and used for this purpose. The WNN algorithm (incremental or grid-partitioned) produces a net, of nodes connected by edges, which reflects and preserves the topology of the input data set. Additional weights, which are proportional to the local densities in the input space, are associated with the resulting nodes and edges to store useful information about the topological relations in the given input data set. A fuzziness factor, proportional to the connectedness of the net, is introduced in the system. A watershed-like procedure is used to cluster the resulting net. The number of resulting clusters is determined by this procedure. Experiments confirm the usefulness and efficiency of the proposed neuro fuzzy systems for image segmentation and, in general, for clustering multi- and high-dimensional data.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003