By Topic

View-invariant face detection method based on local PCA cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hotta, K. ; Univ. of Electro-Commun., Tokyo, Japan

The paper presents a view-invariant face detection method based on local PCA cells. In order to extract the general features of faces at each view and position, Gabor filters and local PCA are used. Local PCA cells specialized to each view and position are made by applying a Gaussian to the outputs of the local PCA of Gabor features. By applying the Gaussian, only the local PCA cells which are a similar view to an input give large values. This decreases the bad influence of the local PCA cells of other views. As a result, only one classifier can treat multi-view faces well by integrating the outputs of local PCA cells. It is confirmed that the proposed method can detect multi-view faces. Generalization ability is improved by selecting the local PCA cells using a reconstruction error of local PCA.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003