By Topic

An Eulerian PDE approach for computing tissue thickness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yezzi, A.J. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Prince, J.L.

We outline an Eulerian framework for computing the thickness of tissues between two simply connected boundaries that does not require landmark points or parameterizations of either boundary. Thickness is defined as the length of correspondence trajectories, which run from one tissue boundary to the other, and which follow a smooth vector field constructed in the region between the boundaries. A pair of partial differential equations (PDEs) that are guided by this vector field are then solved over this region, and the sum of their solutions yields the thickness of the tissue region. Unlike other approaches, this approach does not require explicit construction of any correspondence trajectories. An efficient, stable, and computationally fast solution to these PDEs is found by careful selection of finite differences according to an up-winding condition. The behavior and performance of our method is demonstrated on two simulations and two magnetic resonance imaging data sets in two and three dimensions. These experiments reveal very good performance and show strong potential for application in tissue thickness visualization and quantification.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 10 )