By Topic

FAME-a flexible appearance modeling environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stegmann, M.B. ; Dept. of Informatics & Math. Modelling, Tech. Univ. of Denmark, Lyngby, Denmark ; Ersbll, B.K. ; Larsen, R.

Combined modeling of pixel intensities and shape has proven to be a very robust and widely applicable approach to interpret images. As such the active appearance model (AAM) framework has been applied to a wide variety of problems within medical image analysis. This paper summarizes AAM applications within medicine and describes a public domain implementation, namely the flexible appearance modeling environment (FAME). We give guidelines for the use of this research platform, and show that the optimization techniques used renders it applicable to interactive medical applications. To increase performance and make models generalize better, we apply parallel analysis to obtain automatic and objective model truncation. Further, two different AAM training methods are compared along with a reference case study carried out on cross-sectional short-axis cardiac magnetic resonance images and face images. Source code and annotated data sets needed to reproduce the results are put in the public domain for further investigation.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 10 )