Cart (Loading....) | Create Account
Close category search window

The perception of breast cancers-a spatial frequency analysis of what differentiates missed from reported cancers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The primary detector of breast cancer is the human eye. Radiologists read mammograms by mapping exogenous and endogenous factors, which are based on the image and observer, respectively, into observer-based decisions. These decisions rely on an internal schema that contains a representation of possible malignant and benign findings. Thus, to understand the hits and misses made by the radiologists, it is important to model the interactions between the measurable image-based elements contained in the mammogram and the decisions made. The image-based elements can be of two types, i.e., areas that attracted the visual attention of the radiologist, but did not yield a report, and areas where the radiologist indicated the presence of an abnormal finding. In this way, overt and covert decisions are made when reading a mammogram. In order to model this decision-making process, we use a system that is based upon the processing done by the human visual system, which decomposes the areas under scrutiny in elements of different sizes and orientations. In our system, this decomposition is done using wavelet packets (WPs). Nonlinear features are then extracted from the WP coefficients, and an artificial neural network is trained to recognize the patterns of decisions made by each radiologist. Afterwards, the system is used to predict how the radiologist will respond to visually selected areas in new mammogram cases.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.