Cart (Loading....) | Create Account
Close category search window
 

Cone-beam reprojection using projection-matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Galigekere, R.R. ; Imaging Res. Labs., John P. Robarts Res. Inst., London, Ont., Canada ; Wiesent, K. ; Holdsworth, D.W.

This paper addresses reprojection of three-dimensional (3-D) reconstructions obtained from cone-beam scans using a C-arm imaging equipment assisted by a pose-determining system. The emphasis is on reprojecting without decomposing the estimated projection matrix (P-matrix) associated with a pose. Both voxel- and ray-driven methods are considered. The voxel-driven reprojector follows the algorithm for backprojection using a P-matrix. The ray-driven reprojector is derived by extracting from the P-matrix the equation of the line joining a detector-pixel and the X-ray source position. This reprojector can be modified to a ray-driven backprojector. When the geometry is specified explicitly in terms of the physical parameters of the imaging system, the projection matrices can be constructed. The resulting "projection-matrix method" is advantageous, especially when the scanning trajectory is irregular. The algorithms presented are useful in iterative methods of image reconstruction and enhancement procedures, apart from their well-known role in visualization and volume rendering. Reprojections of 3-D patient data compare favorably with the original X-ray projections obtained from a prototype C-arm system. The algorithms for reprojection can be modified to compute perspective maximum intensity projection.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.