By Topic

Consistent labeling of tracked objects in multiple cameras with overlapping fields of view

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khan, S. ; Dept. of Comput. Sci., Lahore Univ. of Manage. Sci., Pakistan ; Shah, M.

We address the issue of tracking moving objects in an environment covered by multiple uncalibrated cameras with overlapping fields of view, typical of most surveillance setups. In such a scenario, it is essential to establish correspondence between tracks of the same object, seen in different cameras, to recover complete information about the object. We call this the problem of consistent labeling of objects when seen in multiple cameras. We employ a novel approach of finding the limits of field of view (FOV) of each camera as visible in the other cameras. We show that, if the FOV lines are known, it is possible to disambiguate between multiple possibilities for correspondence. We present a method to automatically recover these lines by observing motion in the environment, Furthermore, once these lines are initialized, the homography between the views can also be recovered. We present results on indoor and outdoor sequences containing persons and vehicles.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 10 )